Coupling of rates of transcription, translation, and messenger ribonucleic acid degradation in streptomycin-dependent mutants of Escherichia coli.

نویسندگان

  • R S Gupta
  • D Schlessinger
چکیده

The growth rates of streptomycin-dependent mutants varied in proportion to the level of streptomycin supplied; growth also varied characteristically from one dependent strain to another at a given streptomycin concentration. When cells growing at different rates (over a threefold range) were treated with rifampin, direct proportionality was observed for three parameters: (i) the rates of shutoff of transcription of total ribonucleic acid (RNA) and ribosomal RNA, as measured by pulse labeling at later times; (ii) the translation time for molecules of beta-galactosidase; and (iii) the rate of chemical degradation of messenger RNA. In contrast, the rate of functional inactivation of both total and beta-galactosidase messenger RNA was about the same at all growth rates. None of the variations of growth or other parameters were observed in an otherwise isogenic streptomycin-resistant strain treated with streptomycin. Since the mutational change in strd mutants and the site of action of streptomycin are in the 30S ribosomal subunits, it is suggested that the rate of ribosome function is set by the dependent lesion (and the level of streptomycin). One possibility is that the other correlated effects are mechanistically "coupled" to ribosome function, but the apparent coupling could also be an indirect result of differential effects of streptomycin on variables such as ribosomal miscoding and nucleotide pool size. However, since the rate of functional inactivation of messenger RNA is constant even when the RNA is broken down two- to fourfold more slowly, translation yield tends to be proportional to the growth rate of the dependent strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+ ions inhibit messenger ribonucleic acid degradation, but permit messenger ribonucleic acid transcription and translation in deoxyribonucleic acid-coupled systems from Escherichia coli.

DNA-directed formation of RNA and protein was compared in subcellular systems in the absence or presence of Cazf ions. In the absence of Ca2+, messenger RNA was unstable, and protein and RNA accumulation tended to stop after incubations of 10 to 15 min at 37”. In contrast, in the presence of Ca2+ mRNA was stabilized almost completely. As a result, the net accumulation of RNA and protein continu...

متن کامل

Streptomycin dependence in Escherichia coli: effects of antibiotic deprivation on ribosomes.

The inhibition of cell division and the ultimate loss of viability after removal of streptomycin from growing cultures of streptomycin-dependent bacteria are not the result of "unbalanced growth" or of the breakdown of ribosomes. The streptomycin-dependent strain of Escherichia coli K-12 studied continued to synthesize ribonucleic acid (RNA) and protein during streptomycin starvation. There was...

متن کامل

Streptomycin action: greater inhibition of Escherichia coli ribosome function with exogenous than with endogenous messenger ribonucleic acid.

Inhibition of protein synthesis by streptomycin was tested in extracts from a strain of Escherichia coli sensitive to streptomycin. Three kinds of messenger ribonucleic acid (RNA) were employed: endogenous cellular RNA, extracted cellular RNA, and phage R17 RNA. Protein synthesis directed by extracted cellular RNA was inhibited three- to fourfold more than protein synthesis directed by endogeno...

متن کامل

Mutants of Escherichia coli K-12 with an altered glutamyl-transfer ribonucleic acid synthetase.

Three streptomycin-suppressible lethal mutants of Escherichia coli K-12 have been shown to possess structurally altered glutamyl-transfer ribonucleic acid (tRNA) synthetases. Each mutant synthetase displays a K(m) value for glutamate which is 10-fold higher than the parental value, and the mutations reside in two widely separate loci on the genetic map. Mixing of the mutant extracts in pairs ga...

متن کامل

Deoxyribonucleic acid-ribonucleic acid hybridization studies on the L-Arabinose operon of Escherichia coli B-r.

An increase in the rate of synthesis of ara-specific messenger ribonucleic acid as measured by deoxyribonucleic acid-ribonucleic acid hybridization has been detected in the induced wild-type (ara(+)) strain of Escherichia coli B/r as compared with the uninduced control, thus providing evidence that regulation of the positively controlled l-arabinose operon is at the level of transcription.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 125 1  شماره 

صفحات  -

تاریخ انتشار 1976